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Abstract
Tunneling through the one-dimensional Eckart barrier is treated by applying a
higher order semiclassical approximation which adds corrections proportional
to powers of h̄ to the Herman–Kluk (HK) initial value approximation. Although
the usual, zero-order HK treatment is very poor in this case, the first- and
second-order corrections substantially improve the accuracy of the computed
tunneling probabilities. To investigate how this works, the HK expression is
shown to be equivalent, for the present purposes, to a formula involving a
single integral over the initial momentum, with an integrand that has a simple
analytical form. Similarly, the most important part of the first-order correction
term is shown to be expressible in a very simple form. For a particular range of
energies, the integral can be analyzed in terms of a steepest descent treatment
along a path through a caustic. In this way, it is verified that the zero-order
approximation does not approach the correct classical limit as h̄ → 0, but the
first-order term, which does not vanish in this limit, improves the accuracy of
the result. More generally, the corrections of each order contain terms that are
of all orders in h̄1/3, including those that are O(h̄0) and which survive in the
classical limit. The infinite sum over such terms is performed analytically and
shown to yield the correct classical limit for the tunneling amplitude.

PACS numbers: 03.65.Sq, 03.65.Ca, 03.65.Ge

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Semiclassical initial value representation (IVR) methods [1–3] approximate the quantum
propagator as an integral over phase space. Points (p, q) in this space are treated as initial
conditions for ordinary real-valued classical trajectories which are used to construct various
quantities appearing in the integrand. Although several varieties of IVR methods exist [1],
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the approximation developed by Herman and Kluk (HK) [4, 5], which associates a harmonic
oscillator coherent state wavefunction with each trajectory, appears to be the most convenient
and accurate for general applications. In addition to practical computational advantages over
the more familiar semiclassical (SC) treatment of Van Vleck [6] and Gutzwiller [7] (VVG), the
HK and related expressions yield improved accuracy due to their nature as uniform asymptotic
approximations to the quantum propagator.

Despite many successes, IVR methods encounter problems in the treatment of tunneling
between separate classically allowed regions [8–14]. For example, calculations of tunneling
through one-dimensional barriers give probabilities that may be in error by orders of magnitude
when these probabilities become small. Such problems were analyzed in [15] which
investigated tunneling through the one-dimensional Eckart barrier using an IVR approximation
related to the HK method. The reason for the inaccuracy of the approximation was shown
to be related to effects of caustic points in phase space at which a pre-exponential factor in
the integrand vanishes. It was shown how these problems could be overcome by a judicious
choice of the width of the coherent state wavefunctions in the IVR treatment. This moves the
caustics far enough from the real axis so they do not strongly affect the tunneling calculation.
The resulting approximation may then become accurate because, in effect, the integrals in the
IVR expressions allow the initial values of the trajectories to be analytically continued to the
complex plane, resulting in dynamics that would be forbidden for real trajectories. Related
works, confirming the ability of real trajectories to describe tunneling semiclassically, have
since appeared in the contexts of both IVR [16] and non-IVR [17] methods.

Although the treatment of the IVR tunneling problem presented in [15] produced accurate
tunneling probabilities for the Eckart system, its application to more general cases is difficult
since it requires a separate, thorough, study of the classical dynamics for each system treated
and it is not clear how to extend the method to systems having more than one degree of
freedom. Therefore, more general techniques for the treatment of tunneling by IVR methods
are clearly needed.

One approach that might lead to a more robust description of tunneling involves
introducing semiclassical corrections to the HK approximation. A systematic method for
obtaining such corrections was presented in a recent work [18] which derived the HK
approximation as the lowest order asymptotic solution to the Schrödinger equation for the
propagator in the limit as h̄ → 0. This treatment, which we refer to as the higher order HK
(HOHK) method, provides equations that can be solved to determine higher order terms in
the semiclassical expansion for the propagator, making it formally possible to correct the HK
approximation to arbitrary order in h̄.

An attempt to treat tunneling by this approach may, nevertheless, appear to be misguided.
The method described above modifies only the expression for the propagator; it does not
modify the ordinary, real, classical trajectories that are used to calculate this expression. Such
trajectories remain unable to execute classically forbidden motion. For this reason, it is futile
to attempt to treat tunneling by adding analogous correction terms [19, 20] to expressions
based on the Wentzel–Brillouin–Kramers (WKB) wavefunction or the VVG propagator with
real-valued trajectories. However, as mentioned above, the possibility that IVR methods may
treat tunneling is based on the ability of the integrals to provide an analytic continuation of
the classical dynamics to complex initial conditions. Thus, the dynamics directly entering the
calculations need not describe classically forbidden motion if the IVR integrand is carefully
designed to allow the analytic continuation. This mechanism for analytic continuation does
not exist in the straightforward application of the WKB or VVG approximations. Thus, we
cannot dismiss out of hand the possibility that the semiclassical corrections to the IVR formula
may enable a more accurate description of tunneling.
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In previous work [21], we presented some preliminary calculations designed to test
the ability of the HOHK approximation to treat the propagation of wavefunctions in a one-
dimensional quartic double well system. This case is especially problematic for the uncorrected
IVR methods which become highly inaccurate as soon as tunneling sets in. The results of
[21] showed that the SC corrections substantially improved the accuracy of the semiclassical
wavefunctions at short times. However, the corrections seemed to become less effective
for longer times so that their ability to describe tunneling at such times was not decisively
established.

In the present work we apply the HOHK treatment to tunneling for the case of the one-
dimensional Eckart barrier, which lends itself to a simpler mathematical analysis than possible
for the double-well system. We find that the corrections produce an accurate description of
tunneling in an energy range that may correspond to very small tunneling probabilities. In
contrast to [15], the success of this treatment does not depend on the optimization of the
Gaussian width parameter in the IVR treatment. We analyze our results in some detail in order
to understand how the corrections work and to explain some unexpected and unusual aspects
of the h̄-expansion in the present case.

Our HOHK approach should be distinguished from a treatment developed by Pollak and
coworkers [22–25] which achieves a systematic improvement of the HK approximation in a
different way and which has also been applied to tunneling in the Eckart system [26]. For the
present purposes, it is sufficient to remark that the correction terms in Pollak’s expressions have
a more complicated dependence on h̄ than those used in our treatment so that his expansion
does not constitute a semiclassical series in the same sense as the one applied here. Other
comparisons of the two treatments have been presented in [18, 21].

The remainder of this paper is organized as follows. In section 2 we review the
basic equations for the HK and HOHK approximations. We apply these numerically in
section 3 to calculate the tunneling probability in the Eckart system. In section 4 we simplify
the equations to allow a more thorough analysis and present further calculations using the
resulting expressions. In section 5, we identify some features of the results that appear to be
puzzling and specify issues that need to be clarified. In section 6 we analyze the SC expressions
in order to resolve these issues and to understand, in some detail, how the corrected IVR method
successfully improves the description of tunneling. Finally, in section 7 we summarize and
discuss the results of this work.

2. The HK and HOHK approximations

For a one-dimensional system, the HK treatment semiclassically approximates the propagator

Kt(x
′, x) = 〈x ′| exp(−iĤ t/h̄)|x〉, (2.1)

describing evolution of initial position x to final position x ′ in time t, as

Kt(x
′, x) = (2πh̄)−1

∫ ∞

−∞
dp

∫ ∞

−∞
dq exp[−γ2(x

′ − qt )
2/h̄ + ipt(x

′ − qt )/h̄]

×Rt(p, q) exp[iSt (p, q)/h̄] exp[−γ1(x − q)2/h̄ − ip(x − q)/h̄]. (2.2)

In this expression (pt , qt ) are values of the momentum and coordinate at time t along a classical
trajectory initiated from point (p, q) in phase space, γ1 and γ2 are generally complex-valued
parameters with positive real parts,

St (p, q) =
∫ t

0
[pτ q̇τ − H(pτ , qτ )] dτ (2.3)
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is the classical action integral along a trajectory, and the HK prefactor Rt is given by

Rt =
(

2γ1bt

πh̄

)1/2

, (2.4)

where

bt = 1

2

(
∂pt

∂p
− 2iγ2

∂qt

∂p
− 1

2iγ1

∂pt

∂q
+

γ2

γ1

∂qt

∂q

)
. (2.5)

It is useful to express bt in the alternative form

bt = ∂pt

∂z
− 2iγ2

∂qt

∂z
(2.6)

where
∂

∂z
≡ 1

2

∂

∂p
− 1

4iγ1

∂

∂q
. (2.7)

This notation is consistent with the identification of the complex quantities defined as

z = p − 2iγ1q z̄ = p + 2iγ1q, (2.8)

as independent variables.
The derivation of the HK and HOHK formulae in [18] is based on the ansatz

Kt(x
′, x) = (2πh̄)−1

∫ ∞

−∞
dp

∫ ∞

−∞
dq exp[−γ2(x

′ − qt )
2/h̄ + ipt(x

′ − qt )/h̄]

× kt (p, q) exp[−γ1(x − q)2/h̄ − ip(x − q)/h̄], (2.9)

where the function kt (p, q) is determined by imposing the Schrödinger equation [ih̄∂/∂t −
Ĥ (x ′)]Kt(x

′, x) = 0, subject to the initial condition K0(x
′, x) = δ(x ′ − x). After a number

of steps, one obtains an asymptotic expression for kt of the form

kt (p, q) = eiSt (p,q)/h̄Rt (p, q)
∑
n�0

h̄ng
(n)
t (p, q), (2.10)

where g
(0)
t = 1, and the remaining g

(n)
t obey the ordinary differential equations

ġ
(1)
t = ib−1/2

t L̃
(1)
t b

1/2
t , (2.11)

and, more generally,

ġ
(n)
t = ib−1/2

t

n∑
j=1

L̃
(j)
t

(
b

1/2
t g

(n−j)
t

)
, n = 2, 3, . . . , (2.12)

subject to the initial conditions g
(n)
0 = 0. In these equations, L̃

(j)
t are certain differential

operators with respect to variable z that are independent of h̄, and the dot denotes differentiation
with respect to t. Equations (2.11)–(2.12) form a closed hierarchy that can be solved recursively
to obtain terms g

(n)
t to arbitrary order n.

It should be noted that the expression for the propagator in (2.9) reduces to the HK
approximation if the series in (2.10) is truncated at the n = 0 term. Thus, subsequent terms,
proportional to h̄n for n � 1, provide SC corrections to the HK treatment. Compared to the
HK approximation, (2.9) merely replaces the prefactor Rt with Rt

∑
h̄ng

(n)
t . Alternatively,

(2.9) replaces the HK expression with the series

Kt(x
′, x) =

∑
n�0

h̄nK
(n)
t (x ′, x), (2.13)
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where K
(0)
t is the HK propagator and the quantities

K
(n)
t (x ′, x) = (2πh̄)−1

∫ ∞

−∞
dp

∫ ∞

−∞
dq exp[−γ2(x

′ − qt )
2/h̄ + ipt(x

′ − qt )/h̄]Rt(p, q)

× g
(n)
t (p, q) exp[iSt (p, q)/h̄] exp[−γ1(x − q)2/h̄ − ip(x − q)/h̄] (2.14)

have the form of the HK propagator with Rt replaced by Rtg
(n)
t . It is important to stress

that the functions g
(n)
t (p, q) are independent of h̄, so that the only apparent h̄ dependence in

each term of (2.13), beyond that occurring in the HK approximation, arises from the factor h̄n

multiplying the K
(n)
t . This is one key feature that distinguishes the present expressions from

those of Pollak and coworkers [22–26].
A general expression for the operator L̃(1) is given in [18]. When this is applied in (2.11)

for a system with a single degree of freedom, one obtains the explicit differential equation [21]

iġ(1)
t =

(
4γ 2

2

m
− V2

)(
5

8

b′2
t

b4
t

− 1

4

b′′
t

b3
t

)
+ V3

(
5

12

b′
t ct

b3
t

− 1

6

c′
t

b2
t

)
− 1

8
V4

c2
t

b2
t

, (2.15)

for the first-order correction function g
(1)
t , where Vn = ∂nV (qt )/∂qn

t ,

ct ≡ ∂qt

∂z
= 1

2

∂qt

∂p
− 1

4iγ1

∂qt

∂q
, (2.16)

and primes denote differentiation with respect to z. Formal expressions for the higher order
operators L̃(n), n > 1 can be obtained by the procedure described in [18]. These can be
reduced to computationally useful forms, allowing one to derive explicit expressions for the
differential equations (2.12), for arbitrary order n, in analogy to (2.15). Since the expressions
become increasingly complex with increasing n, this step is most conveniently accomplished
using computer algebra.

3. Numerical application

HK and HOHK calculations of tunneling probabilities were performed for scattering in the
one-dimensional Eckart system defined by the Hamiltonian [27]

H(p, q) = p2/2m + V0 sech2(q/a). (3.1)

The potential energy function describes a symmetric barrier about q = 0 of height V0 which
decays to small values for |q| � a. The parameters were chosen as V0 = 0.425 eV, a =
0.734 au, and m = 1060 au, mimicking those for the H+H2 exchange reaction. The
transmission amplitude S(E) at energy E can be calculated from the expression [28]

S(E) = lim
x0→−∞ lim

t→∞ exp(iEt/h̄)
〈p′|�t 〉
〈p′|�0〉 , (3.2)

where �t is the wave packet that evolves at time t from the initial state �0 which is localized in
space about the point x0 < 0 to the left of the barrier and |p′〉 is the momentum eigenfunction
associated with eigenvalue

p′ =
√

2mE. (3.3)

We note that, although the value of 〈p′|�t 〉 depends on the function � chosen, this dependence
is canceled from S in the indicated limits by the factor 〈p′|�0〉 appearing in the denominator
of (3.2).

In the present calculations we chose the initial wave packet as the coherent state
wavefunction

〈x|�0〉 =
(

2α

πh̄

)1/4

e−α(x−x0)
2/h̄+ip0(x−x0)/h̄ (3.4)

5
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Figure 1. Transmission probabilities for the Eckart system obtained with the HOHK treatment.
The curves labeled 0, 1 and 2 denote results of the zeroth, first and second-order approximations,
respectively. The circles are the exact quantum results.

and determined the wavefunction at time t as

〈x ′|�t 〉 =
∫ ∞

−∞
Kt(x

′, x)〈x|�0〉 (3.5)

using IVR approximations for Kt . The quantities 〈p′|�t 〉 at the initial and final times in
(3.2) were obtained by Fourier transforming the corresponding 〈x ′|�t 〉. The HK and HOHK
expressions allow this step to be performed analytically.

Figure 1 reports calculations of the transmission probability

P(E) = |S(E)|2 (3.6)

obtained using the usual (zeroth order) HK approximation, the first-order HOHK
approximation and the second-order HOHK approximation. Also shown in this figure are the
quantum results obtained from an exact formula for S(E) [27, 29]. The IVR calculations were
performed using initial wave packet parameters p0 = 5.7 au, x0 = −10 au and α = 1.0 au.
This state was evolved to time t = 4000 au using HK and HOHK propagators with Gaussian
width parameters γ1 = γ2 = 0.5 au. The phase space integrations were performed by a Monte
Carlo technique using 4×104 sample points. Calculation of the HOHK integrand for each such
point requires numerical integration of a set of ordinary, time-dependent differential equations
to determine the functions qt , pt , St , as well as the quantities bt and ct and their derivatives
with respect to z, and the functions g

(n)
t and their derivatives with respect to z (needed in

calculations for orders greater than one). As the order of the approximation increases from
zero to one to two, the number of real differential equations that must be solved per trajectory
for a one-dimensional system increases from 7 to 17 to 31. The expressions to be integrated
with respect to time also become more complex as the order is increased. As a result, the
computational time per trajectory is about 1.8 times greater for a first-order calculation than
for an ordinary zeroth-order (HK) treatment and is about 2.7 times greater for a second-order
computation than for a first-order calculation.

The zeroth-order results in figure 1 resemble those obtained using a different IVR
technique in [15] and are substantially inaccurate in the energy range shown. The reason

6
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for this similarity will be clarified below where we show that the two approximations are
essentially equivalent for this system. Thus, as in the earlier work [15], we can attribute the
inaccuracy of the present results to the existence of caustics points in the complex plane of
initial conditions where the HK prefactor Rt vanishes. We will analyze this issue further in
sections to follow.

Figure 1 demonstrates that the first-order and second-order corrections significantly
improve the accuracy of the HK results. The third-order corrections were found to be very
small so that such higher order results are not displayed. The observation that the HOHK
treatment can substantially overcome the inaccuracies of the HK approximation for tunneling
is one of the principal results of this work. In the remainder of this paper we attempt to
understand how the semiclassical corrections operate in this case, especially in view of our
previous analysis of tunneling in this system by IVR methods [15].

4. Simplification of the IVR treatments

To enable a detailed analysis of the IVR corrections for tunneling, we wish to reduce the HK
and HOHK expressions to simpler forms. These steps are based on the analytical formulae for
the classical quantities entering the HK propagator expression for the Eckart system. [15] For
the present purposes, these exact expressions can be further simplified since the calculation of
S(E) requires the classical variables only in the asymptotic limits t → ∞ and x0 → −∞.

It is important to note that, under these limiting conditions, the classical variables become
singular functions of the initial momentum p at p = ps , where

ps ≡
√

2mV0 (4.1)

is the momentum corresponding to the barrier energy V0. For example qt has a logarithmic
branch point and pt has a discontinuity at p = ps . Thus, the integral over all p in (2.2) naturally
decomposes into an integral from −∞ to ps and an integral from ps to ∞. It was shown in
[15] that the range of integration over p in the IVR calculation of the tunneling amplitude could
be restricted to ps < p < ∞ so that only classical trajectories with energies greater than V0

entered the calculation. Accurate results for S(E) when E < V0 were nevertheless possible
because the integrand could be analytically continued from the path along the real p-axis,
through the complex plane, to values p < ps lying on the real axis below the singularity.

Test calculations verify that the integration over p in the HK propagator, (2.2), can also
be restricted to the range ps < p < ∞ for the evaluation of the tunneling probability using
(3.2). Therefore, to simplify our expression for S(E), we focus on asymptotic formulae for
the classical variables for the case ps < p. For conditions

q 	 −a, (q + pt/m) � a, (p − ps)/ps � exp(2q/a), (4.2)

appropriate for application of (3.2), it is possible to derive the approximate formulae [15]

qt = q +
pt

m
+ a ln

(
p2 − p2

s

p2

)
, (4.3)

pt = p, (4.4)

and

St = p2t

2m
− aps ln

(
p + ps

p − ps

)
, (4.5)

from which one can also demonstrate that

7
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∂qt

∂p
= t

m
+

2ap2
s

p
(
p2 − p2

s

) , (4.6)

∂pt

∂p
= 1, (4.7)

∂qt

∂q
= 1, (4.8)

and
∂pt

∂q
= 0. (4.9)

It is shown in appendix A that substitution of these expressions in (2.2) for the HK propagator
allows the integral over q to be evaluated analytically. As a result, one obtains a simpler
expression for Kt , (A.6), involving only a single integral. For the present conditions, this is
equivalent to

Kt(x
′, x) =

(
1

2πh̄

)∫
dp

(
∂pt

∂p
− 2iγ

∂xt

∂p

)1/2

e−γ (x ′−xt )
2

eipt (x
′−xt )/h̄ eiSt (p,x)/h̄, (4.10)

with γ = γ1γ2/(γ1 + γ2).
To understand how the semiclassical correction terms should be applied to this expression

for Kt , we note that an alternative derivation of (4.10) from (2.2) exists. Considering the limit
as γ1 → ∞ in equations (2.4) and (2.5), we find that

lim
γ1→∞ Rt exp[−γ1(x − q)2/h̄] =

(
∂pt

∂p
− 2iγ

∂xt

∂p

)1/2

δ(x − q) (4.11)

with γ = γ2. When substituted in (2.2), the delta function eliminates the integration
over q, yielding a result identical to (4.10). Since the limit γ1 → ∞ converts ∂/∂z to
(1/2)∂/∂p (see (2.7)), and qt to xt , this derivation shows that the expression for bt reduces to
(1/2)(∂pt/∂p − 2iγ ∂xt/∂p) in the present approximation for Kt . Similarly, equations (2.11)
and (2.12), determining the HK correction terms g

(n)
t , remain valid in the present case with

the same substitutions. This conclusion can be verified by comparison of the treatment in [18]
with that of appendix D in [30]. However, since it is awkward to interpret the primes appearing
in equations such as (2.15) as (1/2)∂/∂p, we find it preferable, for notational convenience, to
redefine bt for the IVR expression of (4.10) as

bt = ∂pt

∂p
− 2iγ

∂xt

∂p
. (4.12)

This is equivalent to replacing qt with xt and z with p in (2.6). In this way, (2.12) for ġ
(1)
t

continues to be applicable for the simplified IVR propagator if, e.g., ct is interpreted as

ct = ∂xt

∂p
, (4.13)

and the primes are now understood as denoting derivatives with respect to p, e.g., b′
t = ∂bt/∂p.

It is also shown in appendix A that substitution of (4.10) for the propagator into (3.2)
leads to the formula

S(E) = (−2π ih̄)1/2 ei(p′2t/2m+p′x)/h̄Kt (p
′, x), (4.14)

where

Kt(p
′, x) = (−2π ih̄)−1/2

∫ ∞

−∞
dx ′ e−ip′x ′/h̄Kt (x

′, x) (4.15)

8
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is the propagator in the final momentum-initial position representation, and is approximated
by the IVR formula

Kt(p
′, x) = (2πh̄)−1

∫
dp[σt (p)]1/2 e−(p′−pt )

2/(4γ h̄) e−ip′xt /h̄ eiSt (p,x)/h̄, (4.16)

where

σt (p) = ∂xt

∂p
+

i

2γ

∂pt

∂p
= i

2γ
bt (p). (4.17)

In (4.14) and in subsequent equations for S, the limits t → ∞ and x → −∞ are suppressed.
Although these limits are implicit in the formal expressions, computations are carried out with
large but finite values of t and |x|.

It is useful to note that (4.14) for S(E) can be obtained by an alternative method which
simply involves choosing |�0〉 in (3.2) as a position eigenstate so that 〈x|�0〉 = δ(x−x0). [15]
Equations (4.14) and (4.16) were used for the computations and analyses of tunneling in the
Eckart system presented in [15]. We have now established that this simplified IVR approach
is equivalent to the full HK treatment for S(E) described in section 3. Although we have
established the relationship between these treatments only for the special case of the Eckart
system, it appears possible to demonstrate that similar conclusions apply for calculations of
S(E) in general, one-dimensional, unbound, symmetrical systems.

These developments allow us to analyze the numerical results obtained in the previous
section in terms of the simpler formula

S(0)(E) = (2π ih̄)−1/2
∫ ∞

ps

dp[σt (p)]1/2 eiφt (p,p′)/h̄, (4.18)

which is obtained by substituting (4.16) into (4.14), choosing the lower integration limit as
ps , and defining

φt(p, p′) = p′2t/2m + i(p′ − pt)
2/4γ + p′(x − xt ) + St (p, x). (4.19)

We have added the superscript (0) to S to emphasize that the present expression constitutes
the zeroth-order (uncorrected) IVR approximation to the scattering amplitude.

Substituting the asymptotic formulae of equations (4.3)–(4.9) in equations (4.17) and
(4.19), we can derive the approximations

σt (p) = β +
2ap2

s

p
(
p2 − p2

s

) , (4.20)

and

φt(p, p′) = 1
2β(p − p′)2 − a[(p′ + ps) ln(p + ps) + (p′ − ps) ln(p − ps) − 2p′ ln p],

(4.21)

where

β = t

m
+

i

2γ
. (4.22)

We note that the resulting scattering amplitude S(0) is independent of the initial position x and
depends on parameters t and γ only through the variable β.

As implied by our discussion concerning (4.10), higher order approximations to S(E) are
obtained by substituting

[σt (p)]1/2 → [σt (p)]1/2
∑
n�0

h̄ng
(n)
t (p) (4.23)

9
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in (4.18), where g
(n)
t are obtained from equations (2.11) and (2.12) by defining bt according

to (4.12) and replacing qt with xt and z with p. We thus obtain the expansion

S(E) =
∑
n�0

h̄nS(n)(E) (4.24)

where

S(n)(E) = (2π ih̄)−1/2
∫ ∞

ps

dp[σt (p)]1/2g
(n)
t (p) eiφt (p,p′)/h̄. (4.25)

We now attempt to simplify the first-order correction term g
(1)
t with the objective of

obtaining a more transparent formula for S(1). An exact expression for g
(1)
t , obtained by

integrating (2.15), is presented in appendix B. This result is applicable for the first-order
HOHK propagator and (with the substitutions described above) for the term S(1) in (4.24).
An analogous formula has been presented by Alonso and Forbes [31, 32] in the context of
electromagnetic wave propagation. We wish to simplify it for use in (4.25) for S(1)(E) by
applying the long-time asymptotic expressions for the classical variables.

To accomplish this, we substitute (4.7) in (4.12) to obtain

bt = 1 − 2iγ ct , (4.26)

where we have used (4.13). This allows us to apply the relation

1

ct

= 2iγ +
bt

ct

(4.27)

in (B.5), yielding

g
(1)
t = γ

12

(
3b′′

t

b2
t

− 5b′2
t

b3
t

)
+

i

24

(
5c′2

t

c3
t

− 3c′′
t

c2
t

)
+ I, (4.28)

where I is the integral over time defined in (B.6).
We can make further progress by examining the singularities in the various terms in

(4.28). Although the second term in this expression is singular when ct = 0, comparison
with (2.15) shows that g

(1)
t only has singularities at points (referred to later as caustics) where

bt = 0. Thus, the singularities at ct = 0 are canceled by those in the integral I. It is therefore
tempting to combine I with the second term in (4.28) to obtain a quantity that is free from
such singularities. However, this second term also has singularities at p = ps since, near this
point, ct behaves as a/(p − ps) (see (4.6)) so that c′2

t and c′′
t tend to infinity more rapidly than

the quantities c3
t and c2

t in the denominators. These singularities are not canceled by I but
by similar singularities in the first term of (4.28). Therefore, to obtain an expression for g

(1)
t

which is free from these spurious singularities, we express I as

I = 3ic′′
t

24

(
1

c2
t

− 1

c̄2
0

)
− 5ic′2

t

24

(
1

c3
t

− 1

c̄3
0

)
+ Ins, (4.29)

where

c̄0 ≡ a

p − ps

, (4.30)

and Ins is implicitly defined by this equation. The quantities involving negative powers of c̄0

cancel the singularities at p = ps so that the first two terms of (4.29) contain the singularities
in I at ct = 0 and the remainder term Ins is nonsingular by construction. Substitution in (4.28)
then gives

g
(1)
t = 3γ b′′

t

12

(
1

b2
t

− 1

b̄2
0

)
− 5γ b′2

t

12

(
1

b3
t

− 1

b̄3
0

)
+ Ins (4.31)

10
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Figure 2. Transmission probabilities for the Eckart system obtained with the IVR treatment of
(4.24). The curve labeled 0 is the zeroth-order approximation and the curve labeled 1 is the
first-order approximation with the integral I of (4.28) calculated numerically. The dashed and
dotted curves are first-order results obtained using (4.31) with Ins = 0 and (6.15) with Ins = 0,
respectively. The exact quantum results are shown as circles.

where

b̄0 ≡ −2iγ c̄0 = − 2iγ a

p − ps

. (4.32)

Examination of (4.31) near p = ps shows that the factors
(
b−k

t − b̄−k
0

)
cancel the singularities

occurring in the factors b′′
t and b′2

t at p = ps . In this way, we obtain a simpler formula for g
(1)
t

in which all singular terms are displayed explicitly.
Figure 2 reports calculations of the transmission probabilities for the Eckart system

based on the zeroth-order IVR treatment (P = |S(0)|2) and the first-order corrected IVR
approximation (P = |S(0) + h̄S(1)|2) with g

(1)
t calculated using (B.5) and the integral I

evaluated numerically using the trapezoid rule with 1000 points. The parameters are chosen
to be γ = 1.0 au and t = 5300 au, and the details for computation of the integral over p are
similar to those described in [15]. The results of these calculations resemble those shown in
figure 1: the zeroth-order probability is substantially inaccurate but the first-order probability
is in much better agreement with the exact quantum results. The figure also reports an
approximate calculation of the first-order probability using (4.31) for g

(1)
t with the remainder

term Ins neglected. Although differences from the more exact first-order probability are
visible, the effects of Ins are found to be small and the results are still in good qualitative
agreement with the quantum probabilities. Similar conclusions have been verified for other
values of γ .

The neglect of Ins allows very efficient calculations of the first-order corrected tunneling
probabilities. In figure 3 such calculations are reported on a semilogarithmic scale for γ = 0.5
and γ = 10.0. As the energy approaches V0 = 0.425 au from below, the first-order curves
for both values of γ become indistinguishable and provide significant improvements to the
zero-order approximation. For lower energies, however, the two curves diverge from one
another; the curve for γ = 0.5 becomes inaccurate while the that for γ = 10.0 appears to
remain surprisingly accurate even for energies close to zero.

11
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Figure 3. Transmission probabilities for the Eckart system obtained with the IVR treatment of
(4.24) using two different values of γ . The dashed curves are zeroth-order results approximation
and the solid curves are first-order results obtained using (4.31) with Ins = 0. The exact quantum
results are shown as circles. The inset shows a close-up for energies near the barrier height.

0.25 0.3 0.35 0.4 0.45
Energy (eV)

-1

-0.5

0

0.5

1

C
os

in
e 

of
 P

ha
se

Figure 4. The function cos[arg(S(E))]. Dashed curve: zeroth-order IVR approximation; solid
curve: first-order approximation; dots: exact quantum result.

Since this last behavior was an obstacle to understanding the nature of the corrections,
we emphasize that the accuracy seen in figure 3 for γ = 10.0 and low energies is misleading.
The transmission probabilities that are displayed depend only on the modulus of S, not on its
phase. To examine this latter property, figure 4 examines the quantity cos[arg(S)] obtained
for γ = 10.0 using the zeroth- and first-order approximations (the results for γ = 0.5 are
very similar and are not displayed). For energies in the range from 0.30 to 0.37 eV, both

12
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the zeroth-order and first-order approximations for the phase are seen to be excellent. For
energies above this range, the accuracy of these approximations is poorer, but the difference
between the exact and semiclassical phases is still not large and the first-order approximation
provides a modest improvement in accuracy. For energies below about 0.26 eV, however,
both the zeroth- and first-order approximations become very inaccurate. Thus, the apparent
success of the first-order approximation for the probabilities in this case does not imply similar
accuracy for the corresponding S(E) at low energies. Indeed, further calculations show that
the accuracy of the first-order probabilities decreases at low energies if γ is chosen to be much
larger than 10. Thus, the low energy accuracy for γ = 10.0 in figure 3 appears to be fortuitous
and the range of good agreement between the first-order and exact quantum results is restricted
to energies greater than or about equal to 0.3 eV for both values of γ investigated here.

5. The issues

The ability of the SC corrections to improve the description of tunneling, observed in the
previous sections, raises a number of questions. To bring these issues into focus, we briefly
review the conditions that enable the zeroth-order IVR approximation of (4.18) to describe
tunneling semiclassically.

Previous analysis [15] concerning the validity of the IVR approximation for tunneling was
based on the observation that the treatment will be accurate if the method of steepest descents
can be applied to the integral over p in (4.18) to yield the primitive semiclassical (PSC) result
[33]

Spsc(E) = exp(iφr/h̄), (5.1)

which becomes exact as h̄ → 0 (the error in the approximation is of order h̄ exp(iφr/h̄)). The
function φr appearing here is defined as

φr ≡ φt(p
′, p′). (5.2)

This, condition will be obeyed if (a) the complex phase function φt(p, p′) has a saddle point
(where ∂φt/∂p = 0) at p = p′, (b) the integration path along the real axis can be deformed
to the path of steepest descent (SD) from this point and (c) ∂2φt/∂p

2 = σt at p = p′. This
last condition is needed in order for the pre-exponential factor arising from the SD treatment
to cancel the factor σ

1/2
t (p′)/(2π ih̄)1/2 in the integrand of (4.18) at p = p′, to produce the

coefficient 1 for the exponential in (5.1).
To locate the saddle points for the analytically continued integrand, we note that

differentiation of (4.19) and application of (4.17) gives

∂φt (p, p′)
∂p

= −σt (p)(p′ − p). (5.3)

Thus, φt(p, p′) indeed has a saddle point at p = p′ where φt = φr , as needed. Additionally,
we note that ∂2φt/∂p

2 = σt (p
′) at p = p′, as required. We refer to this saddle point as the

root. Provided that the integration path can be deformed through this point, an SD treatment
indeed gives the correct PSC result, (5.1), and the zeroth-order IVR treatment for tunneling is
accurate.

However (5.3) shows that φt can also have saddle points for certain values of p, denoted
as p = pc, where σt (pc) = 0. These points are referred to as caustics. If the integration path
in (4.18) is deformable to the SD contour that passes through such a caustic, instead of the one
through the root, one obtains an asymptotic result for S in the h̄ → 0 limit which involves the
factor exp(iφc/h̄), where

φc ≡ φt(pc, p
′). (5.4)

13
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Figure 5. Contour plot of Imφt (p, p′) for p′ = 5.70 and γ = 0.5. Paths of steepest descent from
the saddle points at p′ and pc are shown. The heavy line extending rightwards from ps ≈ 5.754
is a branch cut that coincides with the real integration path. In the present case, this path can be
deformed to the steepest descent path through the root at p = p′.

This result is semiclassically incorrect since, in general, pc is unrelated to p′ so that φc �= φr .
Thus, the zeroth-order IVR treatment of tunneling is inaccurate in this case.

These considerations show that the accuracy of the zeroth-order IVR description of
tunneling depends on the ability to deform the real integration path to an SD contour passing
through the root rather than a caustic. This, in turn, depends on the relative dispositions of
points p′ and pc in the complex plane. Consider the case in which, roughly speaking, the
lower integration limit ps , in equation (4.18), is closer to the root p′ than the nearest caustic
pc. Figure 5 shows contours for the function Imφt(p, p′), obtained for the choices p′ = 5.70
and γ = 0.5, which illustrate this situation. Shown are two, partially overlapping saddles, one
at the root and one at a nearby caustic where pc ≈ 5.61 + 0.03i. Also displayed are SD paths
through each saddle. The real integration path from p = ps ≈ 5.754 to ∞ coincides with a
logarithmic branch cut of φt and the IVR integrand vanishes in the upper right half-plane. The
looped portion of the SD path through the root is discussed thoroughly in [15]. It is sufficient
to note here that the loop can be shrunken to the point ps so that the lower limit of the path
through the root can be taken as ps and this path can be deformed to the real integration path.

Thus, in the case illustrated by this figure, the IVR treatment asymptotically gives the
correct PSC result of (5.1). The corresponding expression for the tunneling probability has a
particularly simple form. The quantity p − ps appearing in (4.21) has the value (ps − p′) eiπ

when it is analytically continued to the root along the SD path, so that Im φr = πa(ps − p′)
and one obtains

Ppsc(E) ≡ |S(E)|2 = exp[−2πa(ps − p′)/h̄]. (5.5)

These PSC probabilities become inaccurate when 2πa|p′ − ps |/h̄ is small because the
proximity of the saddle point to the branch point at ps makes the simplest stationary phase

14
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Figure 6. Contour plot of Imφt (p, p′) for p′ = 5.50 and γ = 0.5. Paths of steepest descent from
the saddle points at p′ and pc are shown. The heavy line extending rightwards from ps ≈ 5.754
is a branch cut that coincides with the real integration path. In the present case, this path can be
deformed to the steepest descent path through the caustic at p = pc .

treatment invalid. However, in this case, it can be shown [15] that the IVR expression actually
approximates the more accurate uniform semiclassical result for the tunneling probability

Pusc(E) = 1

1 + exp[2πa(ps − p′)/h̄]
. (5.6)

The conclusion is that, when the real integration path can be deformed to the SD path
through the root, the uncorrected IVR treatment of (4.18) already describes tunneling with
real trajectories as h̄ → 0, and yields good accuracy for small-to-moderate values of h̄. It is,
therefore, reasonable to expect that this result can be further improved in such cases by adding
corrections proportional to various powers of h̄, as in (4.25). The overall situation is similar to
that which is expected for the application of the semiclassical IVR corrections to classically
allowed dynamics. Thus, the ability of the corrections to improve the accuracy of the ordinary
IVR treatment does not seem to be surprising or to introduce significant new issues in this
case.

Now, however, we turn attention to the case where, roughly speaking, ps is closer to pc

than p′. Figure 6 shows contours for the function Im φt(p, p′), for p′ = 5.50 and γ = 0.5,
illustrating this situation. We again see overlapping saddles at p = pc and p = p′ and the
SD paths through these points. However, the roles of the two saddles have switched from the
case considered in the previous figure. Here, it is the path through the saddle at pc that can
be deformed to the real integration path from ps to ∞. Thus, an SD treatment establishes
that the IVR expression for S(E) is asymptotically proportional to exp(iφc/h̄) as h̄ → 0.
The validity of this conclusion was confirmed numerically in [15]. Thus, in this case, the SD
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treatment does not yield the correct classically limiting formula for the tunneling amplitude
and a zero-order IVR calculation of this property yields inaccurate results.

Although our treatment will be valid under somewhat more general circumstances (see
section 7), we focus on this latter case since it is less obvious how the corrections operate to
improve the accuracy of the tunneling calculation. Indeed, since the zeroth-order term in the h̄

expansion of (4.24) is not correct as h̄ → 0, it would seem impossible to correct it by adding
terms proportional to positive powers of h̄ which should vanish as h̄ → 0.

An additional basic problem can be identified for this case. Since g
(n)
t are independent of

h̄, the only h̄-dependence of each term S(n) in (4.24) is due to the same rapidly varying factor
exp(iφt/h̄). It should, therefore, be possible to estimate each integral S(n) in the limit h̄ → 0
by the same SD treatment used for the zero-order term. This would imply that each term in
the expansion has the form

h̄nSn(E) ≈ h̄nAn(E, h̄) exp(iφc/h̄), (5.7)

involving the same factor exp(iφc/h̄) and various coefficients An. Consequently, the
asymptotic formula for S(E), to arbitrary order in h̄, should be expressible as exp(iφc/h̄)

multiplied by a series in h̄. Even allowing for the possibility that the An can be expanded
in powers of h̄, we face a basic difficulty: the correct result for S(E) as h̄ → 0, namely
exp(iφr/h̄), has an essential singularity at h̄ = 0. Thus, it cannot generally be expanded in
powers of h̄ about the function exp(iφc/h̄) in the limit as h̄ → 0.

At issue is the nature of the correction expansion in the present case. The questions we
wish to address include: how does the treatment improve the accuracy of the zero-order IVR
results? Under what conditions is it applicable? Is the expansion capable of describing the
semiclassical limit?

6. Analysis

6.1. Strategy

The problems concerning the essential singularity at h̄ = 0, described above, can be
circumvented by confining the energy range for the applicability of the correction treatment to
values corresponding to momenta p′ in the vicinity of the caustic pc nearest ps . In particular,
although the quantity

δ ≡ pc − p′ (6.1)

is ostensibly ‘classical’ and independent of h̄, we propose restricting the values of p′ in the
present treatment so that δ scales as h̄1/3 in the classical limit. Since pc is close to ps in the
cases considered (see (6.12) below), this scaling assumption effectively confines the range of
applicability of the corrected IVR treatment to cases where ps −p′ is small so that the energies
are not too far below the barrier. This restriction appears consistent with the range of accuracy
for the first-order tunneling amplitudes observed in section 4. However, even for this range
of energies, the tunneling probabilities still tend to zero as h̄ → 0, so that this condition does
not limit applicability of the treatment to uninteresting cases where the degree of tunneling is
very small. This becomes apparent if we express Ppsc in (5.5) as exp[−2πa(ε + δ)/h̄], where

ε ≡ ps − pc (6.2)

is independent of h̄. Clearly, Ppsc vanishes as h̄ → 0 even if δ is taken to scale as h̄1/3.
To see how this assumption eliminates the problem of the expansion of exp(iφr/h̄) about

exp(iφc/h̄), we recall the definitions of φr and φc (equations (5.2) and (5.4)), and expand φr

in a Taylor series as

φr = φc − φ′
cδ + 1

2φ′′
c δ2 − 1

6φ′′′
c δ3 + · · · (6.3)
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where the primes denote derivatives with respect to p, as usual. Due to the logarithmic
singularity in φt at p = ps (see (4.21)) the validity of this expansion is restricted to the range
|δ| < |ε|. From (5.3) we have that

φ′
c = σcδ = 0 (6.4)

since σc ≡ σt (pc) = 0 from the definition of pc. Differentiating both sides of (5.3) with
respect to p at p = pc further gives

φ′′
c = δσ ′

c, φ′′′
c = 2σ ′

c + δσ ′′
c , φiv

c = 3σ ′′
c + δσ ′′′

c , (6.5)

so that (6.3) becomes

φr = φc + 1
6σ ′

cδ
3 + O(δ4), (6.6)

so that we can write

exp(iφr/h̄) = A exp(iφc/h̄), (6.7)

where

A = exp{(iσ ′
c/6)[δ3 + O(δ4)]/h̄}. (6.8)

Because of the assumed scaling of δ,A can be expanded in a power series in h̄1/3 and the issue
of the essential singularity in exp(iφr/h̄) at h̄ = 0 does not arise.

6.2. Further approximations for the first-order correction

To proceed, we need to further simplify (4.31) for g
(1)
t . In view of our comments in

section 5, we anticipate that, for the case exemplified by figure 6, an asymptotic h̄ → 0
expression for S(E) can be obtained by approximating the integrals in (4.25) with a stationary
phase treatment about the caustic saddle point nearest to ps . It is, thus, in the vicinity of this
caustic that we need to simplify g

(1)
t . To obtain an estimate for the position of this caustic, we

note that, for small |p − ps |, (4.20) yields

σt ≈ β + a/(p − ps) (6.9)

so that

bt = −2iγ σt ≈ −
(

2iγβ

p − ps

)
(p − ps + a/β). (6.10)

This result shows that σt and bt vanish at

p = ps − a/β, (6.11)

which provides an approximate expression for the caustic position pc. Comparison with (6.2)
shows that

ε ≈ a/β = a

t/m + i/(2γ )
, (6.12)

where we have applied (4.22). This shows that, for the case of large t of interest here, |ε| is
small so that pc is indeed close to ps , consistent with the approximation in (6.9). Substituting
(6.12) in (6.10) now yields

bt ≈ −2iγ a

ε

(
p − pc

p − ps

)
. (6.13)

Additionally, differentiating this equation with respect to p gives

b′
t ≈ 2iγ a

(p − ps)2
, b′′

t ≈ − 4iγ a

(p − ps)3
. (6.14)
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Figure 7. Schematic diagram of the integration contours C (solid) and C1 (dashed) used to define
the integrals in (6.20) and (6.33). Both curves pass slightly to the right of the caustic at p = pc .
The cross-hatched line denotes a logarithmic branch cut in the function φt (p, p′).

When these results are substituted in (4.31) we obtain the very simple approximation

g
(1)
t = i

24a

[
5ε2

(p − pc)3
− ε

(p − pc)2
− 1

p − pc

]
+ Ins, (6.15)

which is valid for p near pc.
Denoting the first-order corrected expression for S(E) as

S1(E) ≡ S(0)(E) + h̄S(1)(E), (6.16)

and applying the above approximation for g
(1)
t , we find that we can express S1 as

S1(E) = J0 +
ih̄

24a
(5ε2J3 − εJ2 − J1) + h̄Jns, (6.17)

in terms of the integrals

Jn(p
′) ≡ (2π ih̄)−1/2

∫ ∞

ps

dp[σt (p)]1/2(p − pc)
−n exp[iφt(p, p′)/h̄], (6.18)

and

Jns(p
′) ≡ (2π ih̄)−1/2

∫ ∞

ps

dp[σt (p)]1/2Ins exp[iφt(p, p′)/h̄]. (6.19)

A calculation of S1(E) based on (6.17) with Jns = 0 is presented in figure 2. The results
verify that the approximations leading from (4.31) to (6.15) are accurate for the range of
energies of interest.

6.3. Saddle-point treatment of integrals Jn

We wish to obtain asymptotic estimates of the integrals Jn for small h̄ by applying an SD
treatment about the saddle at p = pc for cases similar to the one shown in figure 6.
Due to the infinite singularity in (6.18) at p = pc, however, it is not possible to deform
the integration path for Jn so that it completely coincides with this SD contour when
n > 1. Instead, we choose a path that resembles the SD contour but avoids the point pc

by passing slightly to its right. Such an integration contour, denoted by C, is illustrated in
figure 7. We thus express Jn as

Jn = (2π ih̄)−1/2
∫

C

du σ
1/2
t u−n exp[iφt/h̄], (6.20)
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where u = p − pc. We now expand φt and σ
1/2
t in powers of u

φt(p, p′) = φc + uφ′
c + (1/2)u2φ′′

c + (1/6)u3φ′′′
c + (1/24)u4φiv

c · · · , (6.21)

σ
1/2
t (p) = (σ ′

c)
1/2u1/2

(
1 +

σ ′′
c

4σ ′
c

u + · · ·
)

, (6.22)

and apply (6.4) and (6.5) to obtain

Jn = (2π ih̄)−1/2(σ ′
c)

1/2 eiφc/h̄

∫
C

du u1/2−n

(
1 +

σ ′′
c

4σ ′
c

u + · · ·
)

× exp{(i/h̄)[σ ′
cδu

2/2 + (2σ ′
c + σ ′′

c δ)u3/6 + (3σ ′′
c + σ ′′′

c δ)u4/24 + · · ·]}. (6.23)

The various derivatives of σc can be approximated by differentiating (6.9) at p = pc. This
gives the formula

dkσc/dpk = −k!a/εk+1, k = 1, 2, . . . . (6.24)

Substituting these expressions and changing the integration variable to

v =
[
− (2σ ′

c + σ ′′
c δ)

6h̄

]1/3

u, (6.25)

we can write Jn as

Jn =
[
− 3ε

2π i(ε + δ)

]1/2

eiφc/h̄(ξε)−n

∫
C

dv v1/2−n e−iv3
f (v), (6.26)

where

f (v) = exp(−3iηv2/2)(1 + ξv/2 + · · ·) exp(−3iξv4/4 + · · ·) (6.27)

and where we have introduced the dimensionless variables

ξ =
[

3h̄

a(ε + δ)

]1/3

, (6.28)

and

η =
[

aδ3

3h̄(ε + δ)2

]1/3

. (6.29)

Note that ξ = O(h̄1/3), and η = O(h̄0).
For small h̄ (or ξ ), f (v) behaves roughly like exp(−3iηv2/2) and the factor exp(−iv3) in

Jn determines the asymptotic behavior of the integrand for |v| → ∞. We may thus replace
the contour C in (6.26) with a new path C1 that originates at ∞e−iπ/6 (where exp(−iv3) = 0),
passes around the singularity at v = 0, and ends at ∞ eiπ/2 (where again exp(−iv3) = 0).
Such a path is illustrated in figure 7. Having made this replacement, we expand f (v) about
v = 0 as

f (v) =
∞∑

j=0

cjv
j , (6.30)

where, for example,

c0 = 1, c1 = ξ/2, c2 = 3(ξ 2/8 − iη/2), c4 = −3iξ/4 + O(η2) + O(ξ 4).

(6.31)
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Other coefficients cj contain only terms that are O(ξ lηm) with l + m > 1. While it may not
be strictly necessary to include the factor exp(−3iηv2/2) in this expansion, doing so has the
advantage of leading to expressions in terms of elementary functions. We thus obtain

Jn =
[
− 3ε

2π i(ε + δ)

]1/2

eiφc/h̄(ξε)−n

∞∑
j=0

cj In−j , (6.32)

where we have defined

Im =
∫

C1

dv v1/2−m e−iv3
. (6.33)

To evaluate Im, we first consider the case m � 1, so that there is no problem letting the
contour C1 actually pass through the point v = 0, corresponding to p = pc. This allows us to
express the integration path in terms of two straight line segments and we obtain

Im =
∫ 0

∞e−iπ/6
dv v1/2−m e−iv3

+
∫ ∞eiπ/2

0
dv v1/2−m e−iv3

= [−e−i(π/6)(3/2−m) + ei(π/2)(3/2−m)]
∫ ∞

0
dr r1/2−m e−r3

, (6.34)

where we have let v = r exp(iθ), with θ = −iπ/6 or iπ/2. Finally, changing the integration
variable to r3, we can show that

Im = (2i/3) eiπ/4−iπm/6 cos(πm/3)�(1/2 − m/3). (6.35)

Although derived for the case m � 1, (6.35) is actually valid for arbitrary integer m. This
can be seen by integrating (6.33) by parts k times which yields

Im = ik
�(1/2 − m/3)

�(1/2 − m/3 + k)
Im−3k. (6.36)

For sufficiently large k,m − 3k will be �1. Substituting (6.35) with m replaced by m − 3k in
(6.36), again yields (6.35).

Our final general expression for Jn is obtained by substituting (6.35) in (6.32), yielding

Jn =
[

2ε

3π(δ + ε)

]1/2

eiφc/h̄(ξε)−n

∞∑
j=0

cj eiπ(j−n)/6 cos[π(j − n)/3]�[1/2 + (j − n)/3].

(6.37)

Note that each Jn is found to contain a factor ξ−n ∝ h̄−n/3. This is multiplied by a sum
involving coefficients cj proportional to powers of ξ and η corresponding to all positive orders
of h̄1/3.

6.4. First-order expression for S(E)

Applying (6.37), and keeping only terms that are, at most, of first order in ξ and η, we find the
quantities needed to form S1 in (6.17) to be

J0 ≈
(

2

3π

)1/2

eiφc/h̄[�(1/2) − (ξ/8) eiπ/6 cos(π/3)�(5/6)

−(3iη/2) eiπ/3 cos(2π/3)�(7/6)] (6.38)

and

(h̄εn−1/a)Jn ≈
(

2

3π

)1/2

eiφc/h̄(ξ 3−n/3) e−iπn/6{cos(πn/3)�(1/2 − n/3)

− (ξ/8) eiπ/6 cos[π(n − 1)/3](1 − 2n)�(5/6 − n/3)

− (3iη/2) eiπ/3 cos[π(n − 2)/3]�(7/6 − n/3)} (6.39)
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For n = 1, 2, 3, this last expression involves non-negative powers of h̄ only. In fact, the
h̄-dependence for (h̄ε2/a)J3 is identical to that for J0 and both contribute terms that are O(h̄0)

to S1. When these formulae are substituted into (6.17) we obtain the following approximate
result for S1(E), valid to first order in ξ and η:

S1(E) ≈ eiφc/h̄

(
2

3π

)1/2 [
π1/2

{
41

36

}
+ (ξ/4) eiπ/6�(5/6)

{
5

48

}

+ (3iη/4) eiπ/3�(7/6)

{
7

12

}]
. (6.40)

The analogous result for the zeroth-order IVR amplitude, S(0) = J0, has a similar form
except that the factors in the braces are replaced by unity. We are, therefore, in a position to
compare the zeroth- and first-order approximations to S. The term that is independent of ξ

and η has the approximate numerical value of approximately 0.84 exp(iφc/h̄) in the expression
for S(0). Since, φc = φr to this order in ξ and η, this result is not far from the PSC formula
of (5.1). Nevertheless, it is not identical to the PSC result, even for η = 0, corresponding to
p′ = pc, which verifies our claims that the lowest IVR treatment does not yield the correct
classical limit. Multiplication by the factor 41/36 in S1 improves the approximation to about
0.93 exp(iφc/h̄). To examine the effect of the term proportional to ξ , consider the case γ =
1.0 au, t = 5300 au and δ = 0. Then ξ ≈ 3.04 and the ratio of the second term to the first term
in (6.40) has the magnitude 0.33 in S(0) but only 0.03 in S1. Since the corresponding PSC
value is zero, we see that the first-order correction is very effective in decreasing this source of
error in the treatment of tunneling. To examine the term proportional to η, we assume the same
values for t and γ described above but take δ = ε. Then η = 0.33 and the ratio of the third
term to the first term in (6.40) has the magnitude 0.130 for the zeroth-order approximation
and 0.067 for the first-order treatment. The semiclassically correct value should again be zero
so that the first-order correction again improves the zero-order estimate.

This analysis suggests a justification for neglecting the contribution of h̄Ins to S1(E) in
approximate calculations, such as those of section 4. Since Ins is nonsingular at the caustic
saddle point (p = pc), the quantity h̄Jns may be expected to have a smaller value than
the remaining terms h̄Jn, (n = 1, 2, 3) contributing to h̄S(1), which have integrands that
diverge at this point. The effects of this singular behavior are reflected in the h̄-dependence
of the asymptotic expressions for Jn: they cause the power of h̄ on the right of (6.39) for
h̄Jn to be reduced from h̄ to h̄2/3, h̄1/3 and h̄0 for n = 1, 2 and 3, respectively. In contrast,
because this divergent singularity is absent, the treatment of Jns is similar to that for J0, and
h̄Jns remains proportional to h̄, making this term asymptotically smaller than the others in the
classical limit.

6.5. Summation of all correction terms of O(h̄0)

We have pointed out that both terms S(0) and h̄S(1) in the first-order corrected expression for
S(E) have portions that are of order h̄0 and contribute to the classical limit for S(E). Indeed,
each term h̄nS(n) in the expansion (4.24) for S(E) contains similar contributions that survive
as h̄ → 0. Unfortunately, it is very difficult to extend the detailed analysis that we have carried
out above to these higher order terms due to the complicated nature of the expressions for g

(n)
t .

Nevertheless, we now show that it is possible to identify the terms in g
(n)
t that contribute to

the classical limit for S(E) and to sum all such contributions analytically.
The starting point for our treatment is appendix C which derives expressions for the largest

contributions to each correction term g
(n)
t near p = pc. These are the portions of g

(n)
t that are

the most strongly singular (i.e., proportional to (p − pc)
−k with the largest k). The resulting
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approximation to
∑

n h̄ng
(n)
t is called χ(p) (see (C.17)). When this is substituted into (4.24)

one obtains

S(E) ≈ Ssing(E) ≡ (2π ih̄)−1/2
∫ ∞

ps

dp[σt (p)]1/2χ(p) exp[iφ(p, p′)/h̄]. (6.41)

To evaluate this integral, we deform the integration path to curve C and change the integration
variable to v, as in equations (6.20)–(6.26). This gives

Ssing =
[
− 3ε

2π i(ε + δ)

]1/2

eiφc/h̄

∫
C

dv v1/2 e−iv3
f (v)χ (6.42)

where f (v) was defined in (6.27).
Since we are interested here only in contributions of order h̄0, we may replace ε/(ε + δ)

in the factor multiplying the integral with unity and neglect all terms proportional to powers
of ξ in the expression for f (v). Thus,

f (v) = e−3iηv2/2 =
∞∑

m=0

(−3iηv2/2)m

m!
. (6.43)

In the present notation, the expression for χ in (C.17) becomes

χ =
∞∑

k=0

dkikv−3k, (6.44)

where the coefficients dk are defined in (C.15).
It is important to remark that, having expressed χ in terms of the variable v, no explicit

h̄-dependence appears in (6.44). Consequently, the only h̄-dependence in our result for Ssing

will arise from the factor exp(iφc/h̄). In contrast, when terms arising from the less strongly
singular contributions to

∑
h̄ng

(n)
t , that are neglected in χ , are expressed in terms of the

integration variable v (see (6.25)), they are found to be proportional to higher powers of h̄.
Thus, of all terms in the full correction expression, only those included in χ can contribute to
the classical limit for S(E).

With equations (6.43) and (6.44), (6.42) becomes

Ssing(E) ∼ eiφc/h̄

∞∑
m=0

(−3iη/2)m

m!
Gm (6.45)

asymptotically for h̄ → 0, where

Gm ≡
(

− 3

2π i

)1/2 ∞∑
k=0

dkikI3k−2m, (6.46)

in terms of the integrals Im defined in (6.33). Substituting the formulae for these integrals
[(6.35)] and for dk [(C.15)], we obtain

Gm =
(

2

3π

)1/2

eiπm/3 cos(2πm/3)

∞∑
k=0

(−1)k�(3k + 1/2)�(2m/3 − k + 1/2)

54kk!�(k + 1/2)
, (6.47)

which can be recast as

Gm =
(

2

3π

)1/2 (
1

2

)
eiπm/3

∞∑
k=0

�(1/6 + k)�(5/6 + k)

k!�(1/2 − 2m/3 + k)

(
1

2

)k

=
(

2

3π

)1/2 (
1

2

)
eiπm/3 �(1/6)�(5/6)

�(1/2 − 2m/3)
F (1/6, 5/6; 1/2 − 2m/3; 1/2), (6.48)
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using the triplication formula for gamma functions and the definition of the Gauss
hypergeometric function F [34]. For the particular arguments appearing here, the
hypergeometric function can be expressed in the closed form as [34]

F(1/6, 5/6; 1/2 − 2m/3; 1/2) =
(

24

π

)1/2 22m/3�(1/2 − 2m/3)�(m)

3m�(m/3)

× sin[π(1 − m)/3] sin[π(2 − m)/3], (6.49)

where we have used the reflection formula for gamma functions [34]. The sine functions cause
this expression to vanish and, therefore, Gm to be zero unless m = 3ν, where ν = 0, 1, 2, . . ..
For the nonvanishing cases we can write

F(1/6, 5/6; 1/2 − 2ν; 1/2) =
(

24

π

)1/2 [
22ν−2�(1/2 − 4ν)�(3ν)

33ν−1�(ν)

]
, (6.50)

so that we find

G3ν = 3

(
− 4

27

)ν
�(3ν)

�(ν)
. (6.51)

When this result is substituted in (6.45), we obtain

Ssing(E) ∼ eiφc/h̄

∞∑
ν=0

(−3iη/2)3ν(−4)ν3�(3ν)

(3ν)!27ν�(ν)
. (6.52)

Noting that 3�(3ν)/[(3ν)!�(ν)] = 1/ν!, we recognize this sum as the Taylor series for an
exponential, so that

Ssing(E) ∼ exp(iφc/h̄) exp(−iη3/2). (6.53)

However, using equations (6.29) and (6.24), we find that

−i
η3

2
= iσ ′

c

(
δ3

6h̄

)
(6.54)

to lowest order in h̄. Equation (6.6) allows us to express the quantity on the right-hand side of
(6.54) in terms of the difference between φr and φc. Therefore, to lowest order in h̄,

−i
η3

2
= i

(φr − φc)

h̄
. (6.55)

Substituting this result in (6.53) establishes the asymptotic relation

Ssing(E) ∼ exp(iφr/h̄) = Spsc(E) (6.56)

for h̄ → 0. Thus, summation over an infinite number of terms in the correction series yields
the correct semiclassical limiting result for the tunneling amplitude in the Eckart system.

We emphasize that each term h̄nS(n) in the corrected IVR expression for the tunneling
amplitude introduces terms that are of all orders in h̄1/3. In the above derivation we have
selected those that are proportional to h̄0 and performed the sum analytically. It is interesting
that this sum of integrals converges despite the divergence of the sum χ(p) appearing in the
integrand of S in (6.41). Appendix C notes that the sum for χ is asymptotic to a closed
expression involving an Airy function, reminiscent of correction factors appearing in various
semiclassical uniform approximations [33, 35]. It is, therefore, disappointing that this explicit
formula cannot be simply substituted for χ(p) in the calculation of Ssing. The difficulty is
that the condition that χ(p) be continuous along the entire curve C1 is incompatible with
the condition |arg(3iv3/2)2/3| < π , which is needed in order that the Airy expression be
asymptotically equivalent to χ . Thus, although the Airy formula is highly intriguing, it
appears to be of little value. When an infinite number of terms are retained, the proper
interpretation of the correction series is as a sum of integrals, as in (4.24), not an integral over
a sum or an integral over a function that is asymptotically equivalent to this sum.
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7. Discussion

The numerical results presented here verify that the HK and related IVR treatments are
inaccurate for the treatment of tunneling in the Eckart system. This is consistent with our
analysis which shows that they do not provide proper semiclassical approximations for the
tunneling amplitude since they do not tend to the exact result in the limit as h̄ → 0. However,
it is found that the description of tunneling is substantially improved for a certain range of
energies by adding semiclassical correction terms. The mathematical analysis identifies this
range with the condition δ = O(h̄1/3). Although these energies do not extend too far below
the barrier for small h̄, they correspond to tunneling probabilities that may range from values
close to one to those that are very small in the classical limit.

The nature of the correction series in this regime is very different from that at higher
energies where the transmission across the barrier is classically allowed or only weakly
forbidden. At such higher energies, the zeroth-order IVR expression for the tunneling
amplitude S(0)(E) tends to the correct classical limit exp(iφr/h̄) as h̄ → 0. Each higher
order term h̄nS(n)(E) in the series is likewise asymptotically equal to h̄n exp(iφr/h̄) multiplied
by an h̄-independent quantity. Thus, apart from the common factor exp(iφr/h̄), the terms
in this series have the same asymptotic h̄-dependence as those in the series

∑
h̄ng

(n)
t in the

corrected IVR integrand. As a result, the term h̄nS(n) in (4.24) is, as expected, O(h̄n) smaller
than the leading term and provides a relatively minor correction to the zeroth-order IVR
treatment for small h̄. There are, thus, no real surprises in this case and the behavior of the
correction series is analogous to those in other semiclassical contexts such as in the WKB and
VVG theories.

However, for lower energies, where the treatment presented in section 6 applies, the
zeroth-order term in the IVR treatment of tunneling does not provide the correct classical limit
and the higher order terms play a much more important role in achieving accuracy. The leading
h̄ dependence of each integral h̄nS(n) is different from that of the quantity h̄ng

(n)
t appearing in

its integrand, due to the singularities in the function g
(n)
t at the caustics. Each such term h̄nS(n)

can be expanded in a power series containing all positive powers of h̄1/3. In particular, each
such term has a component that remains nonzero as h̄ → 0 and contributes to the classical
limit. The infinite series of such components, proportional to h̄0, can be summed and converges
to an expression representing the exact PSC formula for the transmission amplitude to lowest
order in h̄.

The manner in which the h̄ series works to correct the zero-order IVR estimate and
produce the proper classical limit is unexpected. The derivation of the corrections is based
on the semiclassical expansion (2.10) for the function kt (p, q) which may be interpreted
physically as the propagator in the particular coherent state-like ‘representation’ defined by
(2.9) [18]. Formulae for the correction terms are obtained by substituting this expansion in the
analog of the Schrödinger equation in this representation and identifying coefficients of like
powers of h̄ appearing on both sides of the result. The expression kt ∼ Rt exp(iSt/h̄) is the
proper SC limit for kt and substitution in (2.9) immediately yields the HK approximation for
the propagator Kt in the ordinary position representation. However, for the case of tunneling,
this approximation is generally not the correct SC limit for Kt . Once the order-by-order
correspondence between the h̄-dependence of terms in kt and Kt is destroyed, it is not at all
obvious that the higher order corrections for kt remain valid corrections for Kt . Thus, the
results obtained here could not have been fully anticipated.

Our analysis has been restricted to energy ranges for which the real integration path from
ps to ∞ in the IVR expression can be deformed to the SD path passing through the caustic,
as in figure 6. The opposite case, in which the path can be deformed to the SD path through
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the root (as in figure 5) is, in principle, simpler since one can consider δ to be independent of
h̄ and apply a standard lowest order SD treatment about the root. As mentioned above, one
then finds that the zero-order IVR expression becomes exact as h̄ → 0, and the nth term in
the correction series vanishes as h̄n, just as for the case of classically allowed passage over the
barrier. However, this formal analysis does not have immediate implications for numerical
results obtained with nonzero h̄. For example, the calculations reported in figure 2, based
on the zeroth-order approximation, show no sudden improvement in accuracy as the energy
increases past the value ≈0.40 eV where the root and caustic switch positions. The reason is
that, for nonzero h̄, the saddles for the root and caustic overlap for this energy range, causing
large errors in the lowest order SD treatment. The usual remedy for such problems is to apply
some sort of uniformization procedure. An interesting feature of our results is that the higher
order corrections continue to improve the accuracy of the IVR treatment in this energy regime
despite the apparently inappropriate relative dispositions of the root and caustic points.

The explanation for this continued effectiveness of the correction treatment is that,
provided that δ is taken to scale as h̄1/3, the analysis presented in section 6 remains valid
even when the real integration path cannot be deformed to the steepest descent curve through
the caustic, as was assumed. In more detail, when the integration path can be deformed to
the SD path through the root, it might be expected that the asymptotic analysis of Jn requires
expansion of the exponential factor exp(iφt/h̄) about p = p′ instead of p = pc. However,
this is unnecessary. The integration contour that is deformed to pass through p = p′ (as
in figure 5) can be further deformed to a path that passes near p = pc, similar to C of
figure 7. The treatment of section 6, involving expansions about p = pc, can then be applied
and the results obtained there remain unchanged. It does not matter for these purposes that C
is no longer an SD contour. We recall from equations (6.7)–(6.8) that δ = O(h̄1/3) implies
that the function exp(iφt/h̄) at p = p′ can be expanded about p = pc in powers of h̄1/3. Thus,
the asymptotic evaluation of Jn can be equivalently carried out by expanding this exponential
about pc or p′. As a result, our treatment is valid when |p′ − pc| = O(h̄1/3), regardless of the
relative dispositions of p′ and pc.

Although the present work has investigated the correction series only for the Eckart
system, we believe the basic conclusions to be valid for other unbound one-dimensional
systems having barriers. Indeed, preliminary calculations indicate that they apply for
multidimensional systems as well. However, the relationship to, and implications for bound
systems which exhibit tunneling, such as the double well, [21] are less clear and require further
study.
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Appendix A. Reduction to one-dimensional integrals

To show the equivalence, for the present puposes, of the HK propagator to the simpler IVR
expression of (4.10), we consider (2.2) with the lower limit for integration over p taken as ps ,
as justified in section 4. This allows us to substitute equations (4.6)–(4.9) in (2.6), yielding

bt = 1

2

(
1 +

γ1

γ2
− 2iγ2

∂qt

∂p

)
(A.1)

or

bt = γ2

2γ

(
1 − 2iγ

∂qt

∂p

)
, (A.2)
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where we have defined

γ ≡ γ1γ2

γ1 + γ2
. (A.3)

Thus, (2.4) for the HK prefactor becomes

Rt =
(

γ1γ2

πh̄γ

)1/2 (
1 − 2iγ

∂qt

∂p

)1/2

. (A.4)

Since (4.6) shows that ∂qt/∂p is independent of q,Rt is likewise independent of q. In addition,
equations (4.5) and (4.3) show that St is independent of q and that qt can be expressed in the
form qt = q + q

(1)
t , where q

(1)
t is independent of q. This allows one to perform the integral

over q in (2.2) analytically to obtain∫ ∞

−∞
dq e−γ2(x

′−q−q
(1)
t )2/h̄ eip(x ′−q−q

(1)
t )/h̄ e−γ1(x−q)2/h̄ e−ip(x ′−q)/h̄

=
(

πh̄γ

γ1γ2

)1/2

e−γ (x ′−xt )
2

eip(x ′−xt )/h̄ (A.5)

where xt = x + q
(1)
t is the position at time t of the particle initiated at x. Due to their

independence from q, we can also identify ∂xt/∂p as ∂qt/∂p and St (p, x) as St (p, q), which
allows us to express

Kt(x
′, x) =

(
1

2πh̄

)∫ ∞

ps

dp

(
1 − 2iγ

∂xt

∂p

)1/2

e−γ (x ′−xt )
2

eip(x ′−xt )/h̄ eiSt (p,x)/h̄. (A.6)

Equation (4.10) is equivalent to this result if the lower limit for integration over p is set to ps

and the conditions described by (4.2) are obeyed. A similar reduction of the HK propagator to a
one-dimensional integral was demonstrated by Tanaka [16] for the Hamiltonian H = −gp3/3.

To derive the simplified formula of (4.14) for the scattering amplitude, we substitute (A.6)
in (4.15) and perform the Fourier transform to obtain

Kt(p
′, x) = (2πh̄)−1

∫ ∞

ps

dp[σt (p)]1/2 e−(p′−p)2/(4γ h̄) e−ip′xt /h̄ eiSt (p,x)/h̄ (A.7)

where

σt (p) = ∂xt

∂p
+

i

2γ
. (A.8)

Recognizing that

〈p′|�t 〉 =
∫

dxKt(p
′, x)〈x|�0〉, (A.9)

applying (A.7), and taking into account that the only dependence on x in this propagator
expression is through xt = x + q

(1)
t , we obtain

〈p′|�t 〉 = (2πh̄)−1
∫ ∞

ps

dp[σt (p)]1/2 e−(p′−p)2/(4γ h̄) e−ip′q(1)
t /h̄ eiSt (p,x0)/h̄

×
∫

dx e−ip′x/h̄〈x|�0〉, (A.10)

where x0 is an arbitrary position obeying the conditions of (4.2). Comparison with (A.7)
allows this to be expressed as

〈p′|�t 〉 = (−2π ih̄)1/2 eip′x0/h̄Kt (p
′, x0)〈p′|�0〉, (A.11)

and substitution of this result in (3.2) yields

S(E) = lim
t→∞

x0→−∞
(−2π ih̄)1/2 ei(p′2t/2m+p′x0)/h̄Kt (p

′, x0). (A.12)
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Appendix B. Formula for g(1)
t

Equation (2.15) presents the first-order correction term g
(1)
t as the solution of a differential

equation. Here we outline the steps needed to express g
(1)
t in a useful form as an explicit

function plus a remaining integral.
Differentiating Hamilton’s equations for qt and pt with respect to z yields the following

equations for the time derivatives of the quantities ct and bt defined in equations (2.16) and
(2.6)

ċt = (bt + 2iγ2ct )/m, (B.1)

ḃt = −2iγ2bt/m +
(
4γ 2

2

/
m − V2

)
ct . (B.2)

Similarly, differentiating equations (B.1) and (B.2) repeatedly with respect to z gives the
equations

ċ′
t = (b′

t + 2iγ2c
′
t )/m,

ḃ′
t = −2iγ2b

′
t /m +

(
4γ 2

2

/
m − V2

)
c′
t − V3c

2
t ,

ċ′′
t = (b′′

t + 2iγ2c
′′
t )/m,

ḃ′′
t = −2iγ2b

′′
t /m +

(
4γ 2

2

/
m − V2

)
c′′
t − 3V3ctc

′
t − V4c

3
t .

(B.3)

We can now invert these equations to express bt , ct and their derivatives with respect to z in
terms of the time derivatives. When the resulting formulae are substituted in the right-hand
side of (2.15) one obtains, after some manipulation,

dg
(1)
t

dt
= d

dt

[
5i

(
b′2

t c2
t + btb

′
t ct c

′
t + b2

t c
′2
t

)
24(bt ct )3

− 3i(b′′
t ct + btc

′′
t )

24(bt ct )2

]
+ i

5c′2
t − 2ctc

′′
t

8mc4
t

. (B.4)

Both sides of this equation can now be integrated with respect to t. Applying the initial
condition g

(1)
0 = 0 then gives the desired result

g
(1)
t = 5i

(
b′2

t c2
t + btb

′
t ct c

′
t + b2

t c
′2
t

)
24(bt ct )3

− 3i(b′′
t ct + btc

′′
t )

24(bt ct )2
+ I, (B.5)

where the remainder term I is defined as

I = i
∫ t

0

5c′2
τ − 2cτ c

′′
τ

8mc4
τ

dτ. (B.6)

Appendix C. The dominant contributions to the correction terms near a caustic

Here we show how the largest contributions to the correction terms g
(n)
t (p) in the neighborhood

of a caustic pc can be determined for arbitrary n. Since g
(n)
t (p) have pole singularities at p = pc

(see, e.g., (6.15)), we focus attention on the strongest such singularities, i.e., the poles of the
highest order, since these dominate the behavior of g

(n)
t (p) in this regime.

Consider, first, the first-order correction g
(1)
t , which is obtained by solving the differential

equation (2.11), where the operator L̃
(1)
t is defined in (5.5) of [18]. Since bt is proportional to

p −pc near the caustic (see (6.13)), the most strongly singular contributions to g
(1)
t arise from

the particular term in L̃
(1)
t having the form [18]

L̃
(1)
t ≈ D̃2

t

(
2γ 2

m
− 1

2
V2

)
, (C.1)

27



J. Phys. A: Math. Theor. 41 (2008) 385303 G Hochman and K G Kay

where

D̃t = −i
∂

∂p

1

bt

. (C.2)

To produce the strongest singularity, the operator D̃2
t must act directly on the function b

1/2
t

in (2.11) so that

L̃
(1)
t ≈

(
2γ 2

m
− 1

2
V2

)
D̃2

t . (C.3)

Applying (B.2) we can express the first factor in this equation as

2γ 2

m
− 1

2
V2 = ḃt

2ct

+
iγ bt

mct

≈ ḃt

2ct

(C.4)

where the approximation follows from the vanishing of bt at p = pc. Using (4.27) we can
further write this result as

2γ 2

m
− 1

2
V2 ≈ ḃt

2

(
2iγ +

bt

ct

)
≈ iγ ḃt , (C.5)

where we have again neglected the term proportional to bt on the assumption that p is near pc.
Substituting (C.5) in (C.3), defining

u = p − pc, (C.6)

and expressing

b ≈ b′
cu, ḃ = b′

cu̇ (C.7)

(arising from the Taylor series expansion of b for small u), we obtain

L̃
(1)
t ≈ − iγ u̇

b′
c

∂

∂u

1

u

∂

∂u

1

u
. (C.8)

With these approximations, (2.11) becomes

ġ
(1)
t ≈ ġ

(1)
t

∣∣
sing =

(
5γ

4b′
c

)
u̇

u4
(C.9)

which can be integrated, subject to the initial condition ġ
(1)
0 = 0, to obtain

g
(1)
t

∣∣
sing =

(
5γ

4b′
c

)∫ t

0
dt ′

u̇

u4
= − 5γ

12b′
cu

3
. (C.10)

We can now use (6.14) to approximate

b′
c ≈ 2iγ a

ε2
, (C.11)

so that our result becomes

g
(1)
t

∣∣
sing = 5i

24a

ε2

u3
, (C.12)

which is identical to the first term in (6.15).
Analogous expressions for the higher order corrections are obtained by solving (2.12) for

g
(n)
t . Examination of L̃

(j)
t shows that the most strongly singular contributions to this equation

come from the term in which L̃
(1)
t acts upon b

1/2
t g

(n−1)
t , so that (2.12) can be approximated as

ġ
(n)
t ≈ ġ

(n)
t

∣∣
sing = i

b1/2
L̃

(1)
t b1/2g

(n−1)
t

∣∣
sing. (C.13)
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We can now solve this equation for g
(2)
t |sing using equations (C.8) and (C.12) and repeat this

procedure recursively to obtain g
(n)
t

∣∣
sing for arbitrary n. The result, which can be verified by

induction, is

g
(n)
t

∣∣
sing = dn

(
3iε2

au3

)n

, (C.14)

where

dn = �(3n + 1/2)

54nn!�(n + 1/2)
. (C.15)

The sum of the most singular contributions to the correction terms

χ(p) ≡
∑
n�0

h̄ng
(n)
t

∣∣
sing (C.16)

thus has the form

χ(p) =
∑
n�0

dn(−ζ )−n, (C.17)

where

ζ = ia(p − pc)
3

3h̄ε2
. (C.18)

It is interesting to observe that this divergent sum is an asymptotic series for the Airy function
[34]

2π1/2(3ζ/2)1/6eζ Ai[(3ζ/2)2/3] ∼ χ(p), (C.19)

which is valid as h̄ → 0 for | arg(3ζ/2)2/3| < π . Thus, the expression appearing on the
left-hand side of (C.19) can be regarded as a summed form of χ . The possible usefulness of
this result is discussed in the text.
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